$$R = \frac{2.801 \times 10^{6} |z_{1}z_{2}| q}{(\epsilon T)^{3/4} (1 + \sqrt{q})}$$

å = 14.28, Bjerrum critical distance in Ångstroms for a 2:2 electrolyte in water at 25°. This varies as a function of pressure

c = concentration in moles/l.

m = concentration in moles of solute/kg. of solvent $\rho_r = \text{relative density of water}$

q=1/2 for symmetrical electrolytes, $z_1=z_2$; $z_1=$ $z_2 = 2$ for MgSO₄

 $I = 4c\alpha$, ionic strength of 2-2 salt

T = absolute temperature

 $\alpha = \text{degree of dissociation}$

 ϵ = dielectric constant

 $\eta = \text{viscosity}$